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1. Introduction 

Viscoelastic materials exhibit high internal damping. This feature is exploited in their 
industrial applications ranging from aircraft constructions to submarines and land vehicles. 
High interest in those materials is reflected in number of publications devoted to damping 
by means of viscoelastic tapes and films. Much attention is paid to tranverse vibrations of 
laminated beams with viscoelastic layer (cf. [1, 2]). Since response of such multilayer 
systems depends to a high degree on a damping parameter it seems desirable to develop 
solutions enabling its determination.  

Existing methods of damping identification can be divided into two groups. Modal 
formulation is grounded on calculation of half-power bandwidth [1]. Due to drastic increase 
of modal density in higher  frequencies, observed in all structures, the approach is limited 
to low band covering first few modes of vibrations. Moreover, only values of damping 
parameter, corresponding to natural frequencies, can be estimated by means of the method. 
The other class of solutions is based on analysis of wavefield generated in vibrating 
structure. The k-space methods take into account damping by introduction of complex 
wave number. 

The paper presents results of experimental verification of Inhomogenous Wave 
Correlation method [3, 4], obtained for cantilever beam covered with viscoelastic layer. 
Dependence of complex wave number on frequency is investigated. Results obtained by 
means of alternative, older solution, proposed by McDaniel et al [5], are also demonstrated. 
Section 2 and 3 show theoretical bases of IWC and MacDaniel method, respectively.  When 
compared to original idea, two significant modifications are introduced to the last method. 
First, random continuous excitation instead of transient one has been used. Second, 
similarly to what had been done in IWC method, coherence function has been employed in 



identification algorithm. Both methods use results of the same experimental procedure 
described in section 4. Wavefield generated in a sample is reconstructed from 
measurements done in points located along its length. Comparison of experimentally 
obtained transfer function with theoretical solution enables determination of complex wave 
number in terms of frequency. Identification algorithms implemented in MATLAB are used 
to find the parameter. The paper concludes with discussion of results and final remarks. 

2. Theoretical formulation of IWC method 

IWC method was originally developed as a tool for identification of direction-
dependent dispersion curves in plane structures. As a one-directional propagation is 
assumed, description of a wavefield simplifies significantly and takes form: 

 xkiexW =)(  (1) 

for given frequency ω , where k is complex. Relation between wave number and loss 
factor η  is given by ratio of phase and group velocity, denoted by and ,  
respectively [6] : 
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Since for bending waves group velocity is twice the phase velocity, loss factor may be 
expressed directly in terms of wave number: 
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Correlation between wave observed in experiment and the one described theoretically is 
calculated for every frequency by means of  the formula: 
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where )(~
ixW , )( ixρ  stand for transfer function and coherence, respectively, both 

calculated for response at , denotes complex conjugate and  is a location of ith 

measurement point. Value of 
ix *

ix
k  is determined by maximisation of ratio (4). Finite set of 

pairs { } { })Im,(Re kk  is searched for solution, no optimisation algorithm is used. 



3. Theoretical formulation of McDaniel method 

The method is based on analysis of vibrations of Bernoulli beam. Homogenous 
governing equation is used: 
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After being Fourier transformed, the equation (5) becomes: 
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where introduced term ( ))(1 ωηiE −  describes damping. Solution 
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includes complex wave number: 
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If the theoretical model is correct, relation (7) should be satisfied for every measured 
response. Thus, a set of equations written in matrix form for given frequency ω  
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ought hold, where  , ix ni ,..,1=  denotes a location of ith measurement point and 

),( ωixW  is a response obtained at . Unknown constants , ix jc 4,..,1=j  are 

determined by means of least square method for each complex value of k  assumed in 
consecutive loops of optimisation procedure. Original objective function, proposed by 
McDaniel et al, has been modified. Now it introduces coherence function ρ : 
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where )(~
ixW  denotes experimentally obtained response. MATLAB built-in routine based 

on Nelder-Mead simplex algorithm [7] has been employed. Loss factor may be calculated 
from expression (8): 
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if k , minimizing (10), is used. 

4. Experimental validation  

Experimental apparatus is depicted at figure 1. Steel sample of dimensions 
0.27m×0.02m×0.001m covered with viscoelastic material manufactured by RIETER France 
was tested . Clamping was realized by means of massive vice. Gearing&Watson V4 shaker 
with Bruel&Kjaer 8200 force charge mounted on its head, excited the sample at the free 
end. Polytec OFV 350 laser vibrometer measured velocity in 26 points spaced 0.01m apart 
along length of the beam. Bruel&Kjaer Pulse multi-analyzer system acquired data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Experimental apparatus 

Frequency dependence of real and imaginary part of wave number obtained for both 
presented methods is shown in figures 2 and 3, respectively. Shape of the curves 
representing real part of wave number agrees very well with the one predicted theoretically 
within the whole frequency range. Both methods produce almost identical results. 
However, evident differences are observed in imaginary part of wave number. Loss factor 
calculated with the aid of formulas (3) and (11) for IWC and McDaniel method, 
respectively, is plotted in figure 4. The fact that the parameter determined by means of 



McDaniel procedure takes negative value is a consequence of using minus sign in a 
damping term appearing in equation (6). If loss factor of opposite sign was obtained and the 
notation stayed unaltered, erroneous model of dissipation of energy would result (cf. [8]). 
Finally, it is observed that an average value of the parameter does not change with 
frequency. This means that hysteretic model of damping applies. Unfortunately, no simple 
physical interpretation exists for loss factor obtained by use of IWC method. 

 
Fig. 2. Real part of wave number vs frequency 

 
Fig. 3. Imaginary part of wave number vs frequency 



 
Fig. 4. Loss factor vs frequency 

5. Conclusions 

Two methods of damping identification, both based on wave approach, have been 
verified experimentally. Beam sample covered with viscoelastic layer has been used in 
tests. Method proposed by McDaniel et al was originally validated for low frequencies 
ranging up to 500Hz. The limitation resulting from appearance of other types of waves has 
been removed in the described experiment. Loss factor has been determined within 6.4kHz 
bandwidth. IWC method adapted to the case of one-dimensional wavefield has been used as 
an alternative to approach developed by McDaniel et al. 

Foregoing analysis lacks some important issues which will be addressed in extended 
version of the paper. Missing considerations embrace, among others, profound discussion 
on obtained parameters, comparison of the results with modal data and study on limitations 
of the methods. 
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